90 % onder water fabeltje

  • leon j.

    In het kader van de voorbereiding van mijn nieuwe boek vond ik de volgende nogal interessante gegevens over het voedingsgedrag van forellen:

    Uit een amerikaans onderzoek komt een gemiddelde voor het nemen van voedsel onder water van 43 %

    Is dat percentage in mei nog 66%, de tendens is afnemend naar de zomer toe met nog maar een percentage van 30 in augustus om te eindigen bij 33% in october.

    En nu niet meteen droge vlieg purist gaan roepen, ik vis graag met nimfen, vooral in de zomer nota bene

  • Edwin Kerssies

    @ Leon, weet je toevallig ook of daarbij naar de grootte van de forellen is gekeken? In mijn optiek is het namelijk zo hoe groter de forel, des te minder komt deze naar de oppervlakte, tenzij het “droge vlieg” aanbod dusndaig eiwitrijk is dat deze zich hiermee goed kan voeden. In mijn ervaring op de beken in luxemburg, duitsland, oostenrijk en aanverwante is dat de grote forellen zeker de nodige rivierdonderpadden en kleine vis tot zich toe nemen, een hoppertje lusten ze ook graag, maar een klein mugje laten ze over het algemeen gaan…

  • sjoerd.s

    Je zegt het al : het is een Amerikaans onderzoek, dus naar het eet gedrag van forellen in USA mogen we aannemen.

    Dat eetgedrag kan daar dus heel anders zijn dan in onze Europese wateren, M.i. is het lastig om daar nu conclsusies aan te verbinden.

    Maar misschien geldt het ook voor onze farios . Leuk onderzoekje voor aankomende biologen?.

  • leon j.

    bij mijn weten gaan grotere forellen zeker als de witvis gepaaid heeft wel degelijk achter visjes aan, echt grote vaak ' s nachts. Dan kennen wij op de Ambleve bijv. een wat flauwere periode.(Vanaf eind juni) Rivierdonderpad is ook een genomen aas. Maar jou idee klopt ook niet helemaal. Met dat voeden is het een zaak van voedselaanbod in verhouding tot de hoeveelheid energie die het kost om dit te nemen. Let op, het percentage insecten onder water is nog aanzienlijk, 43 % denk maar aan sedgepoppen en larven nimfen beekvlokreeften enz. bijv.

    Daarnaast is de ene rivier de andere niet . Maar denk maar niet dat je geen grote forellen kunt vangen met een klein vliegje. Ik haakte en verspeelde meerdere vissen van ver in de vijftig cm. Landde drieponders die een yellow sally 16 namen, of een sherry spinner.

  • leon j.

    het is eerder het type rivier (Regen gevoed kalkrijk/ arm) die het verschil uitmaakt dan het continent waar dit onderzoek plaatsvindt.

    T.z.t volgen details.

  • Klaas

    Hoi leon

    Ik zou graag weten wie het onderzoek gedaan heeft en hoe het heeft plaatsgevonden.

    Graag zie ik namen van personen of instellingen die dit doen en waarom het uitgevoerd word en met welk doel het uitgevoerd word.

    Observatie boven water is nog mogelijk maar onder water word toch zeer moeilijk om te zien wat een forel eet,dan nog wat eten ze snachts.

    Mijn inziens zou je dus in een bepaalde periode alle vis uit een rivier moeten doden en de maaginhoud bekijken,dan kun je pas werkelijk zien wat een forel eet.

    Vanzelfsprekend eten forellen in een bepaalde tijd van overvloed van voedsel datgene wat voorhanden is,dieren zijn niet gek en verspillen zo min mogelijk energie.

    Of dit nu vliegen zijn die op het water komen om eitjes te leggen/insekten die sterven na het paren en eites leggen,insekten die hatchen,larven van insekten die onder water leven of visbroed.

    Of het een fabeltje is maakt niet zoveel uit voor mij persoonlijk,zolang ik merk dat ik tijdens het vissen meer vang met een nimf /natte vlieg als met een droge vlieg op een bepaald water telt dat meer voor mij als fabeltjes en onderzoeken.

    Ik ben zover nog maar 1 riviertje tegengekomen waar ik droog meer vang als met een nimf/natte vlieg en dat is een hoog gelegen weidebeek,met uitzondering van het vroege voorjaar als de eerste insekten nog moeten hatchen en het najaar waarin ze wel een kokerjufferimitatie pakken als een van de weinige uitzonderingen.

    Zal wel komen omdat er weinig insektenleven voorkomt onderwater met uitzondering de larven van insekten die hun eitjes in het water afzetten.

    Wat voor een vliegvisser meer van belang is waarom pakken ze die ene keer die droge vliegen maar niet maar op hetzelfde moment een nimf wel?

    Of het aan mijn bindkunst van droge vliegen binden ligt weet ik niet,maar als ik met wat vrienden sta te vissen komt het niet vaak voor dat er droog meer gevangen word als met een nimf of natte vlieg,dus het zou ook de bindkunsten van mij vismaten kunnen liggen.

    Vaak komen we aan bij het water en barst het van de vliegende insekten,natuurlijk vangen we ook wel forel met een droge vlieg dan maar overdag meer de kleintjes en met een nimf vaak weer de grotere,pas tegen de avond vangen we dan ook grotere forel met een droge vlieg.

    Kan ook weer liggen aan de forel of deze pas zijn uitgezet of er al langer verblijven,ik weet het niet.

    Dan nog het wedstrijd vissen met de soms omstreden techniek om met 3 nimfen/natte vliegen tegelijk te vissen,deze werkt wel en er word in een korte tijd algemeen meer vis gevangen al zou men deze vis met bv 3 droge vliegen moeten vangen.

    Wie weet klopt het onderzoek wel en komen de procenten nog hoger uit,al zou het onderzoek uitwijzen dat forel voor 80 % meer voedsel vind op het water als eronder dan is het nog steed de vraag waarom ze makkelijker en sneller in het algemeen met een nimf/natte vlieg te vangen zijn.

    Ik weet een ding wel en dat is dat dieren opportunisten zijn als het om voedsel gaat.

    Een vis kan de hele ochtend zich vol eten aan insekten op het water,daarna gaat hij op zijn schuilplaats liggen,werp ik mijn nimf/natte vlieg voor zijn neus zal hij deze toch vaak alsnog pakken ipv een droge vlieg die vlak boven hem drijft.

    Een dikke worm aan een haak zal hij ook pakken en wie weet een langzaam geviste spinner ook nog wel.

    Maar wie weet als ik het onderzoek lees dat het me kan helpen misschien ook meer vis te vangen met een droge vlieg op bepaalde wateren.

    De stelling dat forel 90% onder water zijn voedsel zoekt ben ik al een tijdje vanaf gestapt,elk water is weer anders en ik stel mij visserij af op het water en voedsel aanbod op het moment dat ik er vis.

    Staat er een boom langs het water vol met rupsen waarvan er veel in het water belanden dat loont het de moeite om onder die boom te gaan vissen met een dikke palmer ipv een blue dun of pheasanttail nimfje.

    Een beek in een weiland waarvan het barst van de sprinkhanen hetzelfde.

    Daarom lees ik eerst graag zo'n onderzoek voordat ik automatisch vanuit ga dan dat ik zo'n onderzoek zomaar geloof.

    Dan nog kan zo'n onderzoek gedaan zijn op een bepaalde gedeelte van een rivier,wie weet is enkele km verder de situatie totaal anders.

    Klaas

  • leon j.

    tip van de sluier: de jongen die dit onderzoek deed wist echt van wanten, het was een van de grootste en breedste onderzoeken ooit, over het hele seizoen en forellen onder de 25 cm telden niet mee. Ook werden er nogal wat vissen boven de 40 gevangen. Het wiel is al lang uitgevonden Klaas!

  • gerard

    Hieronder een voorbeeld van een recent wetenschappelijk onderzoek van enkele Turkse rivieren : het resultaat is totaly different van de amerikaanse vorser.

    Conclusie : be careful with conclusions …

    Turk J Vet Anim Sci

    29 (2005) 417-428

    © T†BÜTAK

    417

    Feeding Habits and Diet Composition of Brown Trout

    (Salmo trutta) in the Upper Streams of River Ceyhan and

    River Euphrates in Turkey

    Cemil KARA

    Department of Biology, Faculty of Science and Arts, Kahramanmaraß SŸtŸ Ümam University, 46100 Kahramanmaraß - TURKEY

    E-mail: cemil@ksu.edu.tr

    Ahmet ALP

    Department of Fisheries, Faculty of Agriculture, Kahramanmaraß SŸtŸ Ümam University, 46100, Kahramanmaraß - TURKEY

    E-mail: aalp@ksu.edu.tr

    Received: 25.09.2003

    Abstract: The feeding habits and diet composition of the stream dwelling resident brown trout Salmo trutta in the upper streams

    of River Ceyhan and River Euphrates were investigated by examining the stomach contents of 611 specimens collected from May

    2000 to April 2001. Analysis of monthly variations of stomach fullness indicated that feeding intensity was higher between February

    and June than that for the spawning season that covered the period from November to January. A total of 42 prey taxa representing

    Coleoptera, Trichoptera, Ephemeroptera, Plecoptera, Malacostraca, Diptera, Araneidae, Odonata, Gastropoda, Acridae, Acarii,

    Heteroptera, fish and fish egg was identified in the diet. The index of relative importance (IRI%) revealed that five food items

    together constituted more than 90% of the diet, with the most important being Gammarus sp. (49.72%), Hydropsychidae

    (14.61%), an unidentified dipteran species (9.21%), Nemoura sp. (8.98%) and Isoperla sp. (6.90%). The Overlap Index (OI) values

    indicated that the resident brown trout in the Stream Aksu, SšÛŸtlŸ and Hurman differed in terms of their diet compositions,

    compared to the trout in other streams. The most important food item varied among the size classes of the brown trout, being

    Rhithrogena sp., Nemoura sp., Gammarus sp. and fish for the classes of trout with 40-80 mm, 81-120 mm, 121-280 mm, and

    >320 mm fork length, respectively. Diet composition of brown trout < 80 mm in length and >240 mm in length was different from

    the other length groups (OI < 0.7). High value overlap index was observed between female and male (OI = 0.989), while no

    significant dietary overlap was evident between immature and mature individuals (OI = 0.465 and OI = 0.472).

    Key Words: Diet composition, brown trout, Salmo trutta, river Ceyhan, river Euphrates

    Ceyhan ve FÝrat Nehirlerinin †st KollarÝndaki AlabalÝklarÝn (Salmo trutta)

    Beslenme ve Besin KompozisyonlarÝ

    …zet: MayÝs 2000 ve Nisan 2001 tarihleri arasÝnda Ceyhan ve FÝrat nehirlerinin Ÿst kollarÝndan yakalanan 611 adet alabalÝÛÝn mide

    ierikleri incelenerek besin kompozisyonlarÝ ve beslenmeleri araßtÝrÝlmÝßtÝr. Mide Doluluk Ündekslerine gšre Þubat-Haziran aylarÝ

    arasÝnda beslenmenin, Ÿreme sezonu olan KasÝm-Ocak aylarÝna gšre daha yoÛun olduÛu gšrŸlmŸßtŸr. Üncelenen mide ieriklerinde

    42 takson tanÝmlanmÝß ve bunlarÝn Coleoptera, Trichoptera, Ephemeroptera, Plecoptera, Malacostraca, Diptera, Araneidae, Odonata,

    Gastropoda, Acridae, Acarii, Heteroptera, balÝk ve balÝk yumurtasÝ gruplarÝna dahil olduÛu tesbit edilmißtir. KÝsmi …nemlilik Ündeksine

    (% IRI) gšre 5 besinsel organizma grubu toplam besin kompozisyonunun % 90 dan fazlasÝnÝ olußturmuß ve bunlar Gammarus sp.

    (% 49,72), Hydropsychidae (% 14,61), teßhis edilemeyen bir dipteran tŸrŸ (% 9,21), Nemoura sp. (% 8,98) ve Isoperla sp. (%

    6,90) dir. Benzerlik Ündekslerine (OI) gšre, Aksu, SšÛŸtlŸ ve Hurman aylarÝndaki populasyonlarÝn besin kompozisyonlarÝ diÛer

    derelerden farklÝlÝk gšstermißtir (OI < 0,7). Besinsel organizmalar balÝk bŸyŸklŸÛŸne gšre farklÝ olup 40-80 mm boya sahip

    alabalÝklarda Rhithrogena sp., 81-120 mm boy gruplarÝnda Nemoura sp., 121-280 mm boy gruplarÝnda Gammarus sp. ve 320

    mmÕden bŸyŸk alabalÝklarda ise en šnemli besin grubu balÝktÝr. Benzerlik Ündekslerinde 80 mmÕden kŸŸk ve 240 mmÕden bŸyŸk

    alabalÝklarÝn besin kompozisyonlarÝ diÛer boydaki balÝklardan farklÝdÝr (OI < 0,7). Dißi ve erkek bireylerin besin ierikleri bŸyŸk šlŸde

    birbirine benzerken (OI = 0,989), ergin olmayan bireylerin besin ierikleri erginlerden farklÝ bulunmußtur (OI = 0,465, OI = 0,472).

    Anahtar SšzcŸkler: Besin kompozisyonu, alabalÝk, Salmo trutta, Ceyhan nehri, FÝrat nehri

    Research Article

    Introduction

    Three potential food groups for brown trout are

    available: substrate-associated preys, surface drift and

    suspended drift (1). It is generally believed that brown

    trout feed chiefly on drifting invertebrates (2-5);

    however, several reports have noted that dwelling

    salmonids can use benthic prey (6-10). Trout diet is

    mainly determined by the habitat (11,12), season (1,12-

    14), prey availability (10), ontogeny (12) and sex of the

    fish (15).

    Salmo trutta forms resident populations in the upper

    streams of rivers and occurs in North Africa, Europe,

    West Asia and Anatolia (16,17) and it is an important

    potential species for recreational fishery. However, in

    most parts of these areas, river systems have undergone

    great changes in their ecology and morphology in recent

    years and river damming and degradation of spawning

    habitats have caused a decline in the stocks of S. trutta.

    Scarce information is available on feeding activity of S.

    trutta populations in Turkey. In addition, natural food

    organisms used as feed by the brown trout have received

    little attention, except a recent study in which stomach

    contents of 24 S. trutta from the Stream ‚atak of the

    River Tigris were examined for two months (18).

    In this paper, we describe diet composition of the

    native resident brown trout in eight streams of River

    Ceyhan and River Euphrates in Turkey by analysis of

    stomach contents, with comparison by locality, season,

    size classes of fish, sex of fish and food diversity.

    Materials and Methods

    The study was conducted in the streams of FÝrnÝz,

    TerbŸzek, KšmŸr, Hurman, SšÛŸtlŸ, Nergele and Aksu of

    the River Ceyhan, which runs into the eastern

    Mediterranean Sea, and in the Stream Gšksu of the River

    Euphrates, which runs into the Persian Gulf (Figure 1).

    Some information about sampling stations is given in

    Table 1.

    A total of 611 individuals of the brown trout was

    caught monthly at three selected sampling sites, 50 m

    apart from each other in each stream, between May 2000

    and April 2001 by electrofishing. All the captured fish

    specimens were immediately preserved in a plastic barrel

    containing 4% formalin solution for later analysis. For

    each fish, total weight (g), fork length (mm) and sex

    were recorded. For each fish following the removal of

    digestive tract, stomach was opened, its content was

    flushed into a Petri dish and contents were weighed (g).

    Stomach content flooded with distilled water were

    examined under a stereoscopic microscope. Contents

    were sorted and prey items were identified to the lowest

    feasible taxonomic units using the identification keys of

    Edmondson (19), Demirsoy (20) and Geldiay and BalÝk

    (17). Food items were damp dried on paper towels and

    the number of individuals and total weight of each prey

    category were recorded. Tract contents having no food

    items were also recorded as empty stomachs.

    The Fullness Index (FI) was calculated to investigate

    the variations in feeding intensity, using the equation: FI

    =(Weight of stomach contents/Total weight of

    fish)*10000 (21). One way analysis of variance and

    TukeyÕs test were used to test for deviations in feeding

    intensity among the different habitats, months and fish

    sizes.

    Dietary importance of food categories was

    determined using the modified index of relative

    importance; IRI= (N% +W%) *FO% (22), where FO%:

    percentage frequency occurrence of stomachs in which a

    food item occurred relative to the total number of

    stomachs containing food items; N% is the numeric

    percentage of individuals of a food item relative to the

    total number of food items in the stomach and W% is the

    percentage weight of a food item relative to the weight

    of the total stomach contents. Percentage of weight

    (W%) was used instead of volumetric percentage (23)

    Using the IRI% to compare diet composition between

    the pairs of locations, months, length groups or sex, an

    overlap index (OI) was estimated (24);

    where Pij and Pik are the proportional use of prey type i

    at locations, months, length groups or sex j and k,

    respectively. This index ranges from 0 (no overlap) to 1

    (complete overlap). Overlap index values >0.7 are usually

    considered to indicate significant overlap (25).

    OI =

    S PijPik

    Pij

    S 2Pik

    2

    Feeding Habits and Diet Composition of Brown Trout (Salmo trutta) in the Upper Streams of River Ceyhan and River Euphrates in Turkey

    418

    C. KARA, A. ALP

    419

    Figure 1. The map of the working area and streams locations.

    Results

    Feeding intensity

    Resident brown trout ranged from 57.5 mm to

    395.0 mm in fork length (FL) with a mean value of 143.4

    mm, and their total weight ranged from 2.8 g to 842.0

    g, with a mean value of 65.64 g. The number of

    specimens, mean fork length and mean weights from

    different stream populations in the study are presented in

    Table 1. Of the 611 resident brown trout, 259 (42.39%)

    were females, 230 (37.64%) males and 122 (19.97%)

    immatures.

    Of the total stomach analysed, 8.70% were empty. In

    the summer months most of the stomachs of resident

    brown trout were full, while 24.24% of the stomachs

    were empty in December during the spawning season

    . The most empty stomachs were seen in

    the Stream FÝrnÝz, Hurman and SšÛŸtlŸ .

    The empty stomachs between 40 mm and 240 mm in

    length varied from 4.88% to 10.26% .

    Whereas, it was 18.82%, 25.0% and 50.0% in the

    length groups 240 Ð 280; 280 - 320 and 320 Ð 360 mm,

    respectively .

    Significant monthly variation was found in

    FI and it fluctuated throughout the year .

    Maximum fullness index were observed in February,

    April, May and June, while the index showed a decline

    from September to January. The resident brown trout

    fed most intensively during spring and early summer

    (FebruaryÐJune). The results indicated that FI was also

    influenced by habitat and length groups .

    The trouts captured in the Stream FÝrnÝz had the highest

    FI . The fish between the size of 40 mm and

    320 mm fed most intensively, whilst the intensity

    declined above 320 mm length .

    Diet composition

    A total of 42 prey was identified in the diets of the

    fish and they are presented in Table 2. Ephemeroptera

    were present in 214 (35.03%), Plecoptera in 208

    (34.04%), Malacostraca in 192 (31.42%) stomachs,

    Feeding Habits and Diet Composition of Brown Trout (Salmo trutta) in the Upper Streams of River Ceyhan and River Euphrates in Turkey

    420

    Table 1. Geographic locations of the streams and number of the fish caught during the study, their fork length and total weight. (FL ± CI: The

    mean fork length ± Confidence interval (95%), W ± CI: Total weight ± Confidence interval (95%)).

    Stream River Latitude Longitude Altitude Number FL ± CI W ± CI

    system (N) (E) (m) of fish (Min-Max) (Min-Max)

    (mm) (g)

    FÝrnÝz Ceyhan 37¡ 45« 36¡ 39« 720 186 162 ± 8.60 95.5 ± 9.66

    (80.1-395.0) (11.4-842.0)

    Aksu Ceyhan 37¡ 46« 37¡ 21« 1125 79 120 ± 7.70 33.8 ± 9.64

    (81.7-264.4) (8.4-256.8)

    Nergele Ceyhan 38¡ 00« 37¡ 13« 1213 32 115 ± 11.00 30.3 ± 8.86

    (76.8-179.8) (6.7-97.5)

    Hurman Ceyhan 38¡ 26« 36¡ 54« 1258 110 165 ± 8.80 80.2 ± 12.39

    (73.3-296.0) (5.7-344.7)

    Gšksu Euphrates 37¡ 52« 37¡ 18« 1280 31 129 ± 16.40 46.1 ± 15.33

    (63.2-217.1) (3.6-152.0)

    TerbŸzek Ceyhan 38¡ 04« 36¡ 27« 1390 92 120 ± 9.30 38.7 ± 8.87

    (57.5-260.1) (2.8-247.9)

    KšmŸr Ceyhan 38¡ 08« 36¡ 33« 1417 64 122 ± 12.10 41.8 ± 12.63

    (64.4-365.0) (3.9-549.0)

    SšÛŸtlŸ Ceyhan 38¡ 09« 37¡ 36« 1474 17 193 ± 37.10 131.3±70.60

    (67.0-369.0) (3.7-548.0)

    while Trichoptera, Diptera and Coleoptera were present

    in 155 (25.37%), 152 (24 88%) and 55 (9.00%)

    stomachs, respectively. In addition, fish, Araneidae,

    Odonata, Gastropoda, Acridae, Acarii, Heteroptera, fish

    eggs, plant seeds and stones were rarely present in the

    stomach contents (Table 2).

    C. KARA, A. ALP

    421

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    J F A M J J S N D

    Month

    0

    5

    10

    15

    20

    25

    30

    35

    Empty stomach ( % )

    49

    27

    33

    37

    12

    123

    182

    115 33

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    FÝrnÝz Komur SšÛŸtlŸ Aksu

    Habitat

    0

    2

    4

    6

    8

    10

    12

    14

    16

    Empty stomach ( % )

    0

    20

    40

    60

    80

    100

    120

    140

    40-80 80-120

    Fork length ( mm )

    0

    10

    20

    30

    40

    50

    60

    70

    Empty stomach ( % )

    Fullness index Empty stomach

    a

    b

    c

    Fullness index Fullness index Fullness index

    120-160160-200 200-240 240-280 280-320 320-360 360-400

    Gšksu

    186

    92 64 110

    17

    32

    79

    31

    41 216

    152

    126

    39

    22

    8

    4

    3

    Terbuzek Hurman Nergele

    Figure 2. Variations in feeding intensity, fullness index and empty stomach, of brown trout:

    a) Monthly variations b) Variations in the habitat c) Variations in the length groups.

    Numbers above bars are sample size (n).

    Feeding Habits and Diet Composition of Brown Trout (Salmo trutta) in the Upper Streams of River Ceyhan and River Euphrates in Turkey

    422

    Table 2. Food items and their relative importance index in the diet composition of resident brown trout from the streams of River Ceyhan and River

    Euphrates.

    Prey FO %FO N %N W %W IRI %IRI

    Coleoptera 55 9.00 90 1.581 2.931 2.256

    Pyrochroa spp. 4 0.655 4 0.070 0.183 0.141 0.138 0.004

    Hydrobius spp. 15 2.455 27 0.474 0.930 0.716 2.922 0.087

    Enochrus spp. 3 0.491 6 0.105 0.457 0.352 0.224 0.007

    Acilius spp. 34 5.565 50 0.878 1.228 0.945 10.145 0.302

    Elmidae 2 0.327 2 0.035 0.089 0.069 0.034 0.001

    Agabus spp. 1 0.164 1 0.018 0.044 0.034 0.009 0.000

    Trichoptera 155 25.37 507 8.907 13.733 10.569

    Hydropsychidae 166 27.169 476 8.363 12.612 9.707 490.944 14.610

    Leptocerus spp. 16 2.619 26 0.457 0.795 0.612 2.800 0.083

    Sericostoma spp. 3 0.491 5 0.088 0.326 0.251 0.166 0.005

    Ephemeroptera 214 35.03 1654 29.058 20.574 15.833

    Rhithrogena spp. 55 9.002 214 3.760 2.412 1.857 50.564 1.505

    Ephemerella spp. 47 7.692 176 3.092 4.626 3.561 51.175 1.523

    Caenis spp. 70 11.457 401 7.045 3.251 2.502 109.380 3.255

    Isonychia spp. 7 1.146 17 0.299 0.188 0.145 0.509 0.015

    Ecdyonurus spp. 21 3.437 564 9.909 7.563 5.821 54.064 1.609

    Heptagenia spp. 7 1.146 19 0.334 0.385 0.296 0.722 0.021

    Epeorus spp. 15 2.455 48 0.843 0.559 0.430 3.125 0.093

    Ephemera spp. 12 1.964 16 0.281 0.686 0.528 1.589 0.047

    Baetis spp. 7 1.146 199 3.496 0.904 0.696 4.804 0.143

    Plecoptera 208 34.04 822 14.441 33.380 25.689

    Nemoura spp. 120 19.640 496 8.714 8.632 6.644 301.631 8.976

    Perla spp. 38 6.219 94 1.651 4.110 3.163 29.938 0.891

    Isoperla spp. 71 11.620 232 4.076 20.638 15.884 231.935 6.903

    Malacostraca 191 31.42 1594 28.004 33.125 25.493

    Gammarus spp. 191 31.260 1593 27.987 33.077 25.458 1670.691 49.719

    Mysid spp. 1 0.164 1 0.018 0.048 0.037 0.009 0.000

    Diptera 152 24.88 930 16.339 9.918 7.633

    Unidentif Dipter 113 18.494 594 10.436 8.193 6.306 309.627 9.214

    Corethra spp. 23 3.764 105 1.845 0.418 0.322 8.157 0.243

    Chaoborus spp. 3 0.491 59 1.037 0.193 0.149 0.582 0.017

    Chironomidae 25 4.092 172 3.022 1.114 0.857 15.873 0.472

    Araneidae 1 0.164 1 0.018 0.012 0.009

    Aranedi 1 0.164 1 0.018 0.012 0.009 0.004 0.000

    Odonata 2 0.327 2 0.035 0.076 0.059

    Calpoteryx spp. 2 0.327 2 0.035 0.076 0.059 0.031 0.001

    Gastropoda 11 1.80 22 0.387 0.854 0.657

    Radix spp. 4 0.655 5 0.088 0.046 0.035 0.081 0.002

    Lymnea spp. 6 0.982 16 0.281 0.791 0.609 0.874 0.026

    Dressiana spp. 1 0.164 1 0.018 0.017 0.013 0.005 0.000

    Acrididae 2 0.327 3 0.053 0.054 0.416

    Oedipoda spp. 2 0.327 3 0.053 0.540 0.416 0.153 0.005

    Acarii 6 0.982 6 0.105 0.027 0.021

    Hydroacari 6 0.982 6 0.105 0.027 0.021 0.124 0.004

    Heteroptera 3 0.491 4 0.070 0.210 0.162

    Notonecta spp. 3 0.491 4 0.070 0.210 0.162 0.114 0.003

    Pisces 8 1.31 12 0.211 13.239 10.189

    Capoeta capoeta 3 0.491 3 0.053 1.048 0.807 0.422 0.013

    Blennius spp. 1 0.164 3 0.053 0.597 0.459 0.084 0.003

    Salmo trutta 1 0.164 3 0.053 1.479 1.138 0.195 0.006

    Phoxinellus spp. 3 0.491 3 0.053 10.115 7.785 3.849 0.115

    Other items

    Trout egg 4 0.655 7 0.123 0.280 0.216 0.223 0.007

    Plant seed 14 2.291 19 0.334 0.369 0.284 1.416 0.042

    Stone 7 1.146 19 0.334 0.666 0.513 0.971 0.029

    Total 5692 100.000 129.94 100.000 3360.30 100.000

    5692 individual preys were counted from 611 trout

    examined and their total wet weight was 129.94 g. The

    most representative prey were Gammarus sp. (27.99%),

    an unidentified dipteran species (10.44%), Ecdyonurus

    sp. (9.91%), Hydropsychidae (8.36%) and Nemoura sp.

    (8.71%). By weight, Gammarus sp. (25.46%)

    represented the largest proportion of the diet, followed

    by Isoperla sp. (15.88%), Hydropsychidae (9.70%) and

    Nemoura sp. (6.64%). The most frequent prey in the

    stomachs were Gammarus sp. (31.26%),

    Hydropsychidae (27.17%), Nemoura sp. (19.64%) and

    unidentified dipteran species (18.49%). According to

    IRI%, five food items represented more than 90% of the

    diet, with the most important being Gammarus sp.

    (49.72%), Hydropsychidae (14.61%), unidentified

    dipteran species (9.21%), Nemoura sp. (8.98%) and

    Isoperla sp. (6.90%) (Table 2).

    IRI% indicate that Gammarus sp. was significantly

    more important in the streams FÝrnÝz, TerbŸzek, Nergele

    and Gšksu, where it made up 43.99%, 59.15%,

    33.67% and 94.32% of the diets, respectively (Table 3).

    Ephemeroptera were also consumed significantly more

    often in the streams KšmŸr (50.06%), Hurman

    (33.67%), SšÛŸtlŸ (90.10%) and Aksu (76.60%).

    According to OI values, the resident brown trout in the

    Stream Aksu, SšÛŸtlŸ and Hurman had different diet

    compositions from the others because of the low values

    of OI (OI < 0.7) (Table 4).

    Temporal variation in the diet

    IRI% of different food items in the stomachs of the

    resident brown trout varied by season (Figure 3).

    Resident brown trout had a similar feeding strategy in

    January, February and December because of high overlap

    C. KARA, A. ALP

    423

    Table 3. Major food items (% IRI) of the brown trout from different stream populations during the study.

    FÝrnÝz TerbŸzek KšmŸr Hurman SšÛŸtlŸ Nergele Gšksu Aksu

    Coleoptera 0.00 1.12 1.57 1.05 0.00 0.00 0.00 1.59

    Hydrobius spp. 1.05 1.59

    Acilius spp. 1.12 1.57

    Trichoptera 13.46 13.49 9.56 17.80 2.09 31.25 1.02 0.00

    Hydropsychidae 13.46 13.49 9.56 16.73 2.09 31.25 1.02

    Leptocerus spp. 1.07

    Ephemeroptera 0.00 7.22 50.06 33.67 90.10 22.60 0.00 76.60

    Rhithrogena spp. 5.92 19.85 3.63 3.80 14.33

    Ephemerella spp 1.30 16.37 15.64

    Caenis spp. 11.14 2.39 66.87

    Ecdyonurus spp. 1.21 12.01 86.30

    Epeorus spp. 1.49 8.27

    Baetis spp. 9.73

    Plecoptera 31.80 13.58 1.80 8.16 0.00 0.00 0.00 0.00

    Nemoura spp. 18.85 3.28

    Perla spp. 13.58 1.80 3.01

    Isoperla spp. 12.95 1.87

    Malacostraca 43.99 59.15 28.45 14.04 0.00 33.67 94.32 9.43

    Gammarus spp. 43.99 59.15 28.45 14.04 33.67 94.32 9.43

    Diptera 10.23 1.81 3.50 22.40 0.00 10.64 3.50 9.31

    Unidentif Dipter 10.23 17.47 2.15 9.31

    Corethra spp. 3.50 4.93

    Chironomidae 1.81 8.49 3.50

    Total 99.48 96.37 94.94 97.12 92.19 98.16 98.84 96.92

    index (OI > 0.7) (Table 5). Five food items,

    Hydropsychidae., Nemoura sp., Isoperla sp., Gammarus

    sp. and unidentified dipteran species, were present at

    every month.

    According to IRI, Gammarus sp. were mainly eaten in

    February (76.25%), July (21.15%), September

    (69.38%) and December (42.75%), whereas Nemoura

    sp. was found to be most important in January

    (41.87%), unidentified dipteran species in April

    (42.33%), Ecdyonurus sp. in May (31.43%), Isoperla sp.

    in June (15.06%) and Caenis sp. was the most important

    food in November (36.96%). Hydropsychidae were

    present in all months, but were never found to be most

    important item in the diet (Figure 3).

    Variation in the diet by size of the fish

    Figure 4 shows a size-dependent variation in IRI% of

    the most important food items in the stomachs.

    Gammarus sp. was mainly eaten by the individuals in the

    Feeding Habits and Diet Composition of Brown Trout (Salmo trutta) in the Upper Streams of River Ceyhan and River Euphrates in Turkey

    424

    Table 4. Dietary overlap index for the resident brown trouts caught in different streams during the study.

    OI (% IRI) FÝrnÝz Terbuzek Komur Hurman SšÛŸtlŸ Nergele Goksu

    Terbuzek 0.856*

    Komur 0.640 0.763*

    Hurman 0.601 0.520 0.652

    SšÛŸtlŸ 0.007 0.011 0.059 0.358

    Nergele 0.740* 0.811* 0.758* 0.624 0.028

    Goksu 0.843* 0.949* 0.689 0.407 0.001 0.912*

    Aksu 0.143 0.132 0.356 0.190 0.011 0.007 0.375

    * Significant overlap

    0

    20

    40

    60

    80

    100

    120

    J F A M J J S N D

    Month

    % IRI

    1 2 3 4 5 6 7 8 9 10

    Figure 3. Monthly variations in the index of relative importance (% IRI) of the major food items of brown trout from the streams of River Ceyhan

    and River Euphrates. 1) Gammarus sp., 2) Hydropsychidae, 3) Unidentified dipteran species, 4) Isoperla sp., 5) Nemoura sp., 6)

    Rhithrogena sp., 7) Ephemeralla sp., 8) Caenis sp., 9) Corethra sp., 10) Ecdynourus sp.

    length groups between 120 and 280 mm, while

    Rhithrogena sp. was dominant food item in the length

    group of 40-80 mm (76.21%), Nemoura sp. in the

    length group of 80-120 mm (22.75%). The first uptake

    of fish by resident brown trout was observed in

    individuals of 160Ð200 mm in length groups but fish was

    the most important food for the resident brown trout

    larger than 320 mm in length.

    Diet composition until 80 mm in length was different

    from the other length groups as OI was smaller than 0.7

    (Table 6). Similarly, diet composition of the fish larger

    than 240 mm in length were different from the others.

    Variation in the diet by sex of the fish

    Of the 611 resident brown trout, 259 (42.39%)

    were females, 230 (37.64%) males and 122 (19.97%)

    immatures. According to OI, high value index was

    observed between females and males (OI = 0.989), while

    no significant dietary overlap was evident between

    immatures and females (OI = 0.465) and males (OI =

    0.472). Gammarus sp. was the most important food item

    C. KARA, A. ALP

    425

    Table 5. Dietary overlap index for the resident brown trouts sampled in different months during the study.

    OI (% IRI) January February April May June July September November

    February 0.693*

    April 0.162 0.166

    May 0.259 0.159 0.353

    June 0.123 0.072 0.846* 0.308

    July 0.400 0.568 0.157 0.695* 0.025

    September 0.638 0.987* 0.188 0.175 0.085 0.611

    November 0.501 0.420 0.391 0.219 0.384 0.395 0.407

    December 0.855* 0.906* 0.372 0.274 0.300 0.559 0.894* 0.557

    * Significant overlap

    0

    20

    40

    60

    80

    100

    120

    40-80 80-120 120-160 160-200 200-240 240-280 280-320 320-360

    Fork length (mm)

    % IRI

    1 2 3 4 5 6 7 8 9 10

    Figure 4. Variations in the index of relative importance (% IRI) of major food items of brown trout in relation to length

    groups. 1) Gammarus sp., 2) Hydropsychidae, 3) Unidentified dipteran species, 4) Isoperla sp., 5) Nemoura sp.,

    6) Rhithrogena sp., 7) Ephemeralla sp., 8) Caenis sp., 9) Fish, 10) Lymnea sp.

    in female and male individuals, whereas Rhithrogena sp.

    was mainly eaten by immature individuals (Figure 5).

    Discussion

    The brown trout examined in the present study fed

    most intensively during the period between February and

    June . Daily ratios of stream dwelling brown

    trout were reported to be highest between June and early

    August, declining sharply in September (14,26,27).

    Fullness index of the brown trout were also reported to

    be the lowest in autumn, then increased from winter to

    summer (11,28). Knutsen et al. (12), studying

    anadromous brown trout at sea, observed that sea trout

    fed most intensively in spring and early summer, and

    feeding declined from a high in MayÐJune to a low in

    July. Lyse et al. (29) reported that sea trout fed

    intensively during MayÐJune. Similarly, in our study,

    fullness index of the stomach was high between February

    and June, started to decline in July to the lowest in

    September. These variations in the feeding activity are

    related to water temperature, which influence fish

    Feeding Habits and Diet Composition of Brown Trout (Salmo trutta) in the Upper Streams of River Ceyhan and River Euphrates in Turkey

    426

    Table 6. Dietary overlap index for the resident brown trouts with different size classes as fork length (mm).

    OI (% IRI) 40-80 80-120 120-160 160-200 200-240 240-280 280-320 320-360

    80-120 0.140

    120-160 0.060 0.793*

    160-200 0.055 0.718* 0.976*

    200-240 0.029 0.609 0.955* 0.959*

    240-280 0.077 0.582 0.952* 0.964* 0.979*

    280-320 0.160 0.343 0.466 0.468 0.378 0.499

    320-360 0.003 0.106 0.182 0.186 0.201 0.191 0.585

    360-400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.232

    * Significant overlap

    Figure 5. Most important food items (%IRI) in immature, female and male brown trout from the streams of River

    Ceyhan and River Euphrates. 1) Gammarus sp., 2) Unidentified dipteran species, 3) Hydropsychidae, 4) Isoperla

    sp., 5) Nemoura sp., 6) Caenis sp., 7) Perla sp., 8) Rhithrogena sp.

    0

    20

    40

    60

    80

    100

    120

    Immature Female Male

    % IRI

    1 2 3 4 5 6 7 8

    metabolism (30) and prey availability (11,28). In winter,

    fish adopt a cost-minimizing strategy, while in summer,

    when the energy requirements for metabolism and

    growth are highest, they maximize their net energy

    intake (14). Elliot (15) reported that there was a marked

    significant difference in feeding between male and female

    sea trout. In our study, there were not significant

    differences in feeding between male and female

    throughout the study.

    Resident brown trout in the present study fed on a

    variety of prey items, and the diet changed with season,

    habitat and fish size. Most of the prey were found to be

    benthic organisms. A majority of the researchers suggest

    that brown trout feed chiefly on drifting invertebrates

    (3,5), although stream-dwelling salmonids can adjust

    their feeding behavior in response to changes in the

    abundance of prey (6,7) and can also use benthic prey (8-

    10). Lehane et al. (1) reported that Trichoptera species

    (30.4%) represented the largest proportion of the diet of

    brown trout in an afforested catchment in Ireland,

    followed by Ephemeroptera (26%), Plecoptera (13.9%),

    Coleoptera (7.3%), Gammarus sp. (6.9%), Mollusca

    (4%), Diptera (3.9%) and others (8%). Ecdyonurus sp.,

    Hydropsychid sp., Baetis sp., Protonemura sp. and

    Gammarus sp. were the most important individual prey

    species and represented the most dependable food

    sources for trout (1). They also observed that not all of

    these were drift-prone species. The most frequent prey

    items of the brown trout in Stream ‚atak in Turkey were

    reported to be Trichoptera (in 17 stomachs, 70.83%),

    Ephemeroptera (in 14 stomachs, 58.33%) and

    Gammarus sp. (in 11 stomachs, 45.83%) (18). In our

    study, Ephemeroptera (37.971%), Plecoptera

    (37.480%) and Gammarus sp. (31.424%) were the

    most frequent prey items and Trichoptera has never been

    dominant food item in the examined populations. It is

    suggested that there may be some variations in the

    feeding patterns of salmonids in the wild, and brown

    trout chiefly feed on the most available prey items (10).

    The variation in trout diet composition and feeding

    strategy between the two macrohabitat types may be a

    result of the differences in food availability related to

    macro-invertebrate vulnerability (5). So the differences

    between our results and Stream ‚atak brown trout

    population may have resulted from prey availability.

    In the present study the fish had similar feeding habit

    in January, February and December. Gammarus sp. were

    most frequently found food item in February (76.25%),

    July (21.15%), September (69.38%) and December

    (42.75%), Nemoura sp. were found to be dominant in

    January (41.87%), unidentified dipteran species in April

    (42.33%), Ecdyonurus sp. in May (31.43%), Isoperla sp.

    in June (15.06%), while Caenis sp. were the most

    important food in November (36.96%). Heggenes et al.

    (13) suggested that trout follow different behavioral

    rules at different times of the year. In accordance with

    this statement, feeding behavior of the brown trout in the

    present study changed with season.

    Elliot and Hurley (30) suggested that the diet of sea

    trout changed with ontogeny because young fish eat

    smaller food items than older ones. This finding is in

    agreement with our results because in the present study

    the fish <80 mm, 80-120 mm, 120-280 mm and >280

    mm fed chiefly on Rhithrogena sp., Nemoura sp.,

    Gammarus sp. and fish, respectively.

    In the present study, the difference in the diet

    composition between female and male was not

    significant, while it was significant between immature and

    male or female individuals. Elliott (15) reported that the

    probability of feeding was significantly lower for male

    than female sea trout in rivers. The differences between

    ElliottÕs result and our findings may have resulted from

    the migration of the sea trouts. According to Elliott (15),

    after leaving salt water sea trout feed more intermittently

    and with a less robust appetite than brown trout. So

    probability of feeding is lower for male than female sea

    trout and decrease significantly for both sexes with

    increasing distance upstream from the normal tidal limit.

    In conclusion, this study shows that stream dwelling

    resident brown trout, S. trutta, feed on a variety of prey

    items, and the diet and feeding behavior changes by

    season, habitat and fish size while does not differ by sex.

    C. KARA, A. ALP

    427

    1. Lehane, B.M., Walsh, B., Giller, P.S., OÕHalloran, J.: The influence

    of small-scale variation in habitat on winter trout distribution and

    diet in an afforested catchment. Aquatic Ecol., 2001; 61: 61-71.

    2. Bachmann, R.A.: Foraging behaviour of free ranging wild and

    hatchery brown trout in a stream. Trans. Am. Fisher. Soc., 1984;

    113: 1-32.

    References

    Feeding Habits and Diet Composition of Brown Trout (Salmo trutta) in the Upper Streams of River Ceyhan and River Euphrates in Turkey

    428

    3. Hayes, J.W., Jowett, I.G.: Microhabitat models of large driftfeeding

    brown trout in three New Zealand Rivers. North Am. J.

    Fisher. Manag., 1994; 14: 710-725.

    4. Glova, G.J., Field-Dodgson, M.S.: Behavioral interaction between

    chinook salmon and brown trout juveniles in a simulated stream.

    Trans. Am. Fisher. Soc., 1995; 124: 194-206.

    5. Rader, R.B.: A functional classification of the drift: traits that

    influence invertebrate availability to salmonids. Can. J. Fisher.

    Aqua. Sci., 1997; 54: 1211-1234.

    6. Fausch, K.D., Nakano, S., Kitano, S.: Experimentally induced

    foraging mode shift by sympatric charrs in a Japanese mountain

    stream. Behav. Ecol., 1997; 8: 414-420.

    7. McLaughlin, R.L., Ferguson, M.M., Noakes, D.L.G.: Adaptive

    peaks and alternative foraging tactics in brook charr: evidence of

    short-term divergent selection for sitting and waiting and actively

    searching. Behav. Ecol. Sociobiol., 1999; 45: 386-395.

    8. Forrester, G.E., Chace, J.G., McCarthy, W.: Diel and densityrelated

    changes in food consumption and prey selection by brook

    charr in a New Hampshire stream. Environ. Biol. Fish., 1994; 39:

    301-311.

    9. Amundsen, P.A., Bergersen, R., Huru, H., Heggberget, T.G.: Diel

    feeding rhythms and daily food consumption of juvenile Atlantic

    salmon in the River Alta, northern Norway. J. Fish Biol., 1999;

    54: 58-71.

    10. Lagarrigue, T., Cereghino, R., Lim, P., Reyes-Marchant, P.,

    Chappaz, R., Lavandier, P., Belaud, A.: Diel and seasonal

    variations in brown trout (Salmo trutta) feeding patterns and

    relationship with invertebrate drift under natural and

    hydropeaking conditions in a mountain stream. Aqua. Living Res.,

    2002; 15: 129-137.

    11. Bridcut, E.E., Giller, P.S.: Diet variability in relation to season

    habitat utilisation in brown trout, Salmo trutta L., in a southern

    Irish stream. In Gibson, R.J. and Cutting, R.E. (ed) Production of

    juvenile Atlantic salmon, Salmo salar L., in natural waters. Can.

    Special Publ. Fisher. Aqua. Sci., 1993; 118: 17-24.

    12. Knutsen, J.A., Knutsen, H., Gjosaeter, J., Jonsson, B.: Food of

    anadromous brown trout at sea. J. Fish Biol., 2001; 59: 533-

    543.

    13. Heggenes, J., Krog, O.M.W., Lindas, O.R., Dokk, J.G., Bremnes,

    T.: Homeostatic behavioural responses in a changing

    environment: brown trout (Salmo trutta) become nocturnal

    during winter. J. Anim. Ecol., 1993; 62: 295-308.

    14. Kreivi, P., Muotka, T., Huusko, A., MakiÐPetays, A., Huhta, A.,

    Meissner, K.: Diel feeding periodicity, daily ration and prey

    selectivity in juvenile brown trout in a subarctic river. J. Fish Biol.,

    1999; 55: 553-571.

    15. Elliott, J.M.: Stomach contents of adult sea trout caught in six

    English rivers. J. Fish Bio., 1997; 50: 1129-1132.

    16. Tortonese, E.: The trouts of Asiatic Turkey. Üstanbul †niv. Fen

    Fak. Hidrobiyol. Enst. Derg. Seri B2., 1954; 1: 1-26.

    17. Geldiay, R., BalÝk, S.: TŸrkiye tatlÝsu balÝklarÝ. Ege †niversitesi Fen

    Fak. Kitaplar Serisi. 97, 519 p., 1988.

    18. ‚etinkaya, O.: Investigations of some biological properties of

    brown trout (Salmo trutta Dum., 1858) living the ‚atak Stream

    (Tigris River, Turkey). Istanbul Univ. J. Aqua. Prod., 1999; 13:

    111-122.

    19. Edmondson, W.T.: Freshwater Biology. 2nd ed. John Wiley and

    Sons, Inc., New York, 1248 p., 1959.

    20. Demirsoy, A.: YaßamÝn temel kurallarÝ, OmurgalÝlar / Bšcekler

    Entomoloji. Hacettepe †niversitesi yayÝnlarÝ, Cilt 2 KÝsÝm 2, 941

    p., 1990.

    21. Windell, J.T.: Food analysis and rate of digestion. In: Methods for

    assessment of fish production in freshwaters 2 nd ed. Ricker,

    W.E. (ed.). Blackwell, Oxford, 1971; 215-226.

    22. Pinkas, L., Oliphant, M.S., Iverson, L.K.: Food habits of albacore,

    bluefin tuna, and bonito in California waters. California Dep. Fish

    Game Fish Bull., 1971; 152: 105.

    23. Pita, C., Gamito, S., Erzini, K.: Feeding habits of the gilthead

    seabream (Sparus aurata) from the Ria Formosa (southern

    Portugal) as compared to the black seabream (Spondyliosoma

    cantharus) and the annular seabream (Diplodus annularis). J.

    Appl. Ichthyol., 2002; 18: 81-86.

    24. Gaughan, D.J., Potter, I.C.: Analysis of diet and feeding strategies

    within an assemblage of estuarine larval fish and an objective

    assessment of dietary niche overlap. Fish Bull., 1997; 95: 722-

    731.

    25. Rosas-Alayola, J., Hernandez-Herrera, A., Galvan-Magana, F.,

    Abita-Cardenas, L.A., Muhlia-Melo, A.F.: Diet composition of

    sailfish (Istiophorus platypterus) from the southern Gulf of

    California, Mexico. Fisher. Res., 2002; 57: 185-195.

    26. Allan, J.D.: Determinants of diet of brook trout (Salvelinus

    fontinalis) in a mountain stream. Can. J. Fisher. Aqua. Sci., 1981;

    38: 184-192.

    27. Walsh, G., Morin, R., Naiman, R.: Daily rations, diel feeding

    activity and distribution of age-0 brook char, Salvelinus fontinalis,

    in two subarctic streams. Environ. Biol. Fish., 1988; 21: 195-

    205.

    28. Alanara, A., Brannas, E.: Diurnal and nocturnal feeding activity in

    Arctic char (Salvelinus alpinus) and rainbow trout (Oncorhynchus

    mykiss). Can. J. Fisher. Aqua. Sci., 1997; 54: 2894-2900.

    29. Lyse, A.A., Stefanson, S.O., Ferno, A.: Behaviour and diet of sea

    trout post-smolts in a Norwegian fjord system. J. Fish Biol.,

    1998; 52: 923-936.

    30. Elliott, J.M., Hurley, M.A.: Daily energy intake and growth of

    piscivorous trout, Salmo trutta L. Freshwater Biol., 2000; 44:

    237-245.

  • Noud

    Leon,

    Kun je wat meer informatie over het onderoek geven? Zoals de naam van de onderzoeker, het instituut waaraan hij is verbonden en het journal waar het onderzoek in is gepubliceerd? Ik ben erg benieuwd naar hun data en onderzoeksmethode.

    TL,

    Noud

  • Charles van Gaans

    You win!